Diagnosi delle carie del legno su piante in piedi mediante tecniche tomografiche

Luigi Sambuelli

Incontri Fitoiatrici 2011/2 26 settembre 2011 In ricordo di Giovanni NICOLOTTI

Ultrasonic Tomography

What could supply?

non invasive fast surveying technique
 accurate detection of size and extent of decay

 quantitative determination of ultrasonic velocity distribution in the investigated section

Wood	Longitudinal Wave Velocity
	m / s
Ash (Along Fiber)	4670
Birch (Along Fiber)	3340
Cork	500
Douglas Fir (Cross Gr	ain) 1400
Douglas Fir (With Gr	ain) 4800
Elm (Wood)	1400
Maple (Along Fiber)	4110
Oak	4470
Pine (Along Fiber)	3320
Poplar (Along Fiber)	4280
Sycamore (Along Fibe	er) 4460

Equipment and acquisition geometry

PUNDIT (Portable Ultrasonic Non-destructive Digital Indicating Tester)
54 kHz exponential probes
oscilloscope
personal computer
perimeter gage

16 equidistant measuring points \rightarrow 120 indipendent measurements for each investigated section.

Coordinate definition of source and receiver

travel time reading

<u>1° open problem: attenuation</u>

Signal attenuation deeply affect travel time detection reliability and automatic arrival picking is no more adequate

bad signal-noise ratio traces need signal processing technique application for travel time detection and uncertainty determination

statistical pre-processing

2° open problem: anisotropy

laboratoy measurements of tangential and radial sample velocity

Statistical pre-processing of tomographic data can supply information about anisotropy influence on tomographic results.

Comparison with sample data confirms the validity of the proposed approach.

(quasi)Cylindrical symmetry of wood anisotropy

Longitudinal velocity Tangential velocity Radial velocity

<u>statistical pre-processing</u>

Spatial resolution has been taken into account both from the physical and the mathematical point of view.

Discretisation for tomographic imaging is based on these evaluations.

<u>results</u>

a)investigated section;

b) in situ tomography;

c) laboratory tomography on a wood disk;

d) velocity map obtained by samples measurements (radial - tangential mean velocity).

<u>result comparison</u> 4° open problem: underestimation o velocity contrast

Time lapse tomography

Evolving condition monitoring tested with laboratory measurements of velocity variation maps.

resuming: advantages

- •totally non invasive;
- good accuracy and reliability in determination of size and extent of decay;
- quantitative results;

 possible automation of the acquisition and processing for non expert endusers.

resuming: open problems

<u>estrinsic problem</u> (could be solved by engineering improvement):

- attenuation;
- spatial resolution;
- · anisctropy;

SOLVED ! Maurer et al. 2006

<u>intrinsic problem:</u>

- anisotropy;
- underestimation of velocity contrasts;

<u>further development:</u> <u>technical</u>

- multi-channel ultrasonic equipment and
 "instrumented belt" to speed up the acquisition;
- measuring device for accurate sensors positioning;
- amplified and sharp energising pulse for good s/n ratio signals and outopicking procedure;

 automation of statistical pre-processing and tomographic imaging;

Only partially solved

Resistivity Tomography

Variation of electric properties with frequency and degradation

Some resistance * values of Douglasia under mushrooms attack

		Settimane di incubazione				
Tessuto	fungo	2	4	8	16	
		Resistenza * elettrica del legno (in kΩ)				
Alburno	Nessuno	275	195	240	190	
	Carie bianca	72	70	52	26	
	Carie bruna	75	73	72	35	
Durame	Nessuno	>500	>500	>500	>500	
	Carie bianca	168	70	63	30	
	Carie bruna	142	62	80	34	

* In literature one can often find resistance as there is a kind of standard measuring device

Electric tomography device

Test on wood in laboratory

Test on wood in laboratory

Test on trees in field

Test on trees in field

Test on poles in field

Decayed

resuming: advantages

- fast;
- reduced sensors-wood coupling problems;
- sensitive to humidity and ionic concentration;

 possible automation of the acquisition and processing for non expert endusers.

resuming: open problems

- partially invasive;
- partial accuracy and reliability in determination of size and extent of decay;
- season dependent;
- some ambiguities in interpretation.

MARTINIS R.; SOCCO L.V.; SAMBUELLI L.; NICOLOTTI G.; SCHMITT O.; BUCUR V. (2004). Tomographie ultrasonore pour les arbres sur pied. ANNALS OF FOREST SCIENCE, vol. 61; p. 1-9, ISSN: 1286-4560 15 CITATIONS

SOCCO L.V.; SAMBUELLI L.; MARTINIS R.; COMINO E.; NICOLOTTI G. (2004). Feasibility of ultrasonic tomography for nondestructive testing of decay on living trees. RESEARCH IN NONDESTRUCTIVE EVALUATION, vol. 15; p. 31-54, ISSN: 0934-9847 13 CITATIONS

NICOLOTTI G; SOCCO L. V.; MARTINIS R.; GODIO A.; SAMBUELLI L. (2003). Application and comparison of three tomographic techniques for detection of decay in trees. JOURNAL OF ARBORICULTURE, vol. 29; p. 66-78, ISSN: 0278-5226 41 CITATIONS

SAMBUELLI L.; SOCCO L.V.; GODIO A.; NICOLOTTI G.; MARTINIS R. (2003). Ultrasonic, electric and radar measurements for living trees assessment. BOLLETTINO DI GEOFISICA TEORICA E APPLICATA, vol. 44; p. 253-279, ISSN: 0006-6729 4 CITATIONS

Acknowledgements

Alberto Godio Laura Valentina Socco Roberto Martinis